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Computational recipes for electromagnetic inverse problems
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S U M M A R Y
The Jacobian of the non-linear mapping from model parameters to observations is a key
component in all gradient-based inversion methods, including variants on Gauss–Newton
and non-linear conjugate gradients. Here, we develop a general mathematical framework for
Jacobian computations arising in electromagnetic (EM) geophysical inverse problems. Our
analysis, which is based on the discrete formulation of the forward problem, divides com-
putations into components (data functionals, forward and adjoint solvers, model parameter
mappings), and clarifies dependencies among these elements within realistic numerical in-
version codes. To be concrete, we focus much of the specific discussion on 2-D and 3-D
magnetotelluric (MT) inverse problems, but our analysis is applicable to a wide range of active
and passive source EM methods. The general theory developed here provides the basis for
development of a modular system of computer codes for inversion of EM geophysical data,
which we summarize at the end of the paper.
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1 I N T RO D U C T I O N

Over the past decade or so, regularized inversion codes have been de-
veloped for a range of three-dimensional (3-D) frequency-domain
electromagnetic (EM) induction problems, including magnetotel-
lurics (MT; e.g. Newman & Alumbaugh 2000; Siripunvaraporn
et al. 2004) global geomagnetic depth sounding (Kelbert et al.
2008), and controlled source methods including cross-well imaging
(e.g. Alumbaugh & Newman 1997) and marine controlled source
EM (CSEM; e.g. Commer & Newman 2008). Generally, these ef-
forts have been based upon minimization of a penalty functional,
a sum of data misfit and model norm terms. Several distinct algo-
rithms have been applied to solve the minimization problem, includ-
ing Gauss–Newton (GN) schemes (Mackie & Madden 1993; Sasaki
2001; Siripunvaraporn et al. 2004) and direct gradient-based min-
imization schemes such as non-linear conjugate gradients (NLCG;
e.g. Newman & Alumbaugh 2000) or quasi-Newton schemes (e.g.
Newman & Boggs 2004; Avdeev & Avdeeva 2009). All of these
various applications, and the different inversions algorithms that
have been used, share many common elements. Here, we consider
these commonalities explicitly, developing a general mathematical
framework for frequency-domain EM inverse problems. Through
this framework, we provide recipes for adapting previously devel-
oped inversion algorithms to new applications and for developing
extensions to standard applications (e.g. new data types, model
parametrizations and regularization approaches), and a basis for
development of more efficient inversion algorithms.

Recently, Pankratov & Kuvshinov (2010) have given a general
formulation for calculation of derivatives for 3-D frequency-domain
EM problems. A general formalism for derivative calculation is

also central to our development, so in principal there is consider-
able overlap between their development and what is presented here.
However, in contrast to Pankratov & Kuvshinov (2010), we adopt
a purely discrete approach, assuming from the outset that the for-
ward problem has been discretized for numerical solution, so that
all spaces (EM fields, model parameters and data) are finite dimen-
sional. The penalty functional to be minimized is explicitly taken
to be a discrete quadratic form, and derivatives, adjoints, etc. are
all derived for this discrete problem. Similarly, we explicitly con-
sider the need to use discrete interpolation operators to simulate the
measurement process, and to represent dependence of the discrete
model operator on the unknown parameters.

There has been considerable discussion in the ocean data assim-
ilation literature concerning the virtues of discrete versus contin-
uous formulations of inverse problems (e.g. Bennett 2002). Cer-
tainly, there are some issues in inverse problems (e.g. regularity and
well-posedness) that can only be understood and discussed rigor-
ously through consideration of the problem in continuous form (e.g.
Egbert & Bennett 1996). However, for development of actual prac-
tical inversion algorithms there are good reasons to focus on the
discrete formulation. In particular, only through a direct treatment
of the discrete problem can symmetry (with respect to appropri-
ate inner products) of the numerical implementation of adjoints
be guaranteed. Furthermore, in discrete form many derivations are
trivial, and the steps actually required for computations are often
more clearly and explicitly laid out.

Of course, details about Jacobian calculations and discussions
of the solution of EM inverse problems in discrete form have been
given in many previous publications, both for specific EM methods
(e.g. see references earlier), and with some degree of generality
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(McGillivray et al. 1994; Newman & Hoversten 2000). One moti-
vation for presenting this material again here, with a more abstract
formulation and using homogeneous mathematical notation, is to
provide a foundation for a system of modular computer codes for
frequency-domain EM inverse problems that we have recently de-
veloped. We sketch key aspects of this system at the end of this
paper, and provide a more detailed description elsewhere. Devel-
opment of this modular system motivates us to clearly define all
of the fundamental objects and methods required for a generic EM
inverse problem, and to analyse the dependencies among these ob-
jects. This framework for the modular system, which we believe is
unique both in its abstraction and completeness, is one of the key
results presented in this paper. Another key result which emerges
from our analysis concerns the structure of the Jacobian calculations
in multifrequency and multitransmitter inverse problems. The rather
obvious factorization of the Jacobian into receiver and transmitter
components (previously used to improve efficiency in cross-well
EM inversion by Newman & Alumbaugh 1997) is a simple con-
sequence of our analysis. A less obvious consequence, which has
not to our knowledge been previously noted or made use of, is that
computations of sensitivities for problems with multicomponent
transfer functions (TFs; e.g. 3-D MT) can also be factored, reduc-
ing required computations by a factor of 4 relative to a more naive
approach. Our abstract treatment of Jacobian calculations thus pro-
vides a basis for developing more efficient computational strategies
for specific problems.

This paper is organized as follows: In Section 2, we summarize
some common linearized EM inversion methods based on gradient-
based minimization of a penalty functional, demonstrating at a
coarse level the basic objects used for EM inversion methods. A
key component in all methods is the Jacobian of the mapping from
model parameters to data; we derive general expressions for this
linear operator in Section 3. In Section 4, we consider more explic-
itly the discretization of the governing differential equations, and
the dependence of the discrete equation coefficients on the model
parameter. Here, we introduce specific examples of EM inverse
problems (2-D and 3-D MT) which we will follow throughout the
remaining development. These EM inverse problems are sufficiently
different to motivate and illustrate much of the abstraction required
of a flexible modular system. With these examples as motivation,
we then show in Section 5 how operations with the Jacobian can
be factored into reusable components, and we consider how these
components depend on each other, and on details of the EM method
(e.g. sources and receivers), model parametrization and numerical
discretization. In Section 6, we consider more explicitly the form
of the Jacobian when there are multiple frequencies and multiple,
possibly coupled, source geometries. Some new results on possible
computational efficiencies are given here. In Section 7, we provide
a brief overview and illustration of the modular system of Fortran
95 computer codes that we have developed based on the framework
for general frequency-domain inversion developed in the preceding
sections.

2 L I N E A R I Z E D E M I N V E R S I O N :
OV E RV I E W

We consider regularized inversion through gradient-based mini-
mization of a penalty functional of the form

�(m, d) = (d − f(m))T C−1
d (d − f(m))

+ ν(m − m0)T C−1
m (m − m0) (1)

to recover, in a stable manner, m, an M-dimensional Earth’s con-
ductivity model parameter vector, which provides an adequate fit to
a data vector d of dimension Nd. In (1), Cd is the covariance of data
errors, f(m) defines the forward mapping, m0 is a prior or first guess
model parameter, ν is a trade-off parameter, and Cm (or more prop-
erly ν−1Cm) defines the model covariance or regularization term. In
practice, Cd is always taken to be diagonal, so by a simple rescal-
ing of the data and forward mapping (Cd

−1/2d, Cd
−1/2f), we may

eliminate C−1
d from the definition of �.

The prior model m0 and model covariance Cm can also be
eliminated from (1) by the affine linear transformation of the
model parameter m̃ = C−1/2

m (m − m0), and forward mapping
f̃(m̃) = f(C1/2

m m̃ + m0), reducing (1) to

�(m̃, d) = (d − f̃(m̃))T (d − f̃(m̃)) + νm̃T m̃

= ||d − f̃(m̃)||2 + ν||m̃||2. (2)

After minimizing (2) over m̃, the model parameter in the untrans-
formed space can be recovered as m = C1/2

m m̃ + m0. Note that
this model space transformation is in fact quite practical if instead
of following the usual practice of defining C−1

m = DT D, where D
is a discrete representation of a gradient or higher order deriva-
tive operator, the regularization is formulated directly in terms of
a smoothing operator (i.e. model covariance) Cm. It is relatively
easy to construct computationally efficient positive definite discrete
symmetric smoothing operators for regularization (e.g. Egbert 1994;
Siripunvaraporn & Egbert 2000; Chua 2001). Although the result-
ing covariance matrix Cm will not generally be sparse and may not
be practical to invert, all of the computations required for gradient
evaluations and for minimization of the transformed penalty func-
tions require only multiplication by the smoothing operator C1/2

m (i.e.
half of the smoothing of Cm). It is also straightforward to define
model covariances that can be inverted (i.e. so that multiplication
by both Cm and C−1

m are practical.) In the following, we focus on the
simplified ‘canonical’ penalty functional (2), with tildes omitted.

We begin by summarizing some standard approaches to
gradient-based minimization of (2) using a consistent notation.
Siripunvaraporn & Egbert (2000), Rodi & Mackie (2001), New-
man & Boggs (2004), Avdeev (2005) provide further details and
discussion on these and related methods. A key component in all of
these linearized search schemes is the Nd × M Jacobian, or sensi-
tivity matrix, which we denote J. This gives the derivative of f with
respect to the model parameters, with J ij = ∂f i/∂mj. Newman &
Alumbaugh (1997); Spitzer (1998); Rodi & Mackie (2001) provide
detailed expressions for J for some specific EM inverse problems,
and we will consider the general case extensively below (Section 3).

Search for a minimizer of (2) using J is iterative, as, for example,
in the classical GN method. Let mn be the model parameter at the
nth iteration, J the sensitivity matrix evaluated at mn and r = d −
f(mn) the data residual. Then, linearizing the penalty functional in
the vicinity of mn for small perturbations δm leads to the M × M
system of normal equations

(JT J + νI)δm = JT r − νmn, (3)

which can be solved for δm to yield a new trial solution mn+1 =
mn + δm. As discussed in Parker (1994), this basic linearized
scheme generally requires some form of step length damping for
stability (e.g. a Levenberg–Marquardt approach; Marquardt 1963;
Rodi & Mackie 2001).

There are many variants to this basic algorithm. For example, in
the Occam approach (Constable et al. 1987; Parker 1994), (3) is
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rewritten as

(JT J + νI)m = JT d̂, (4)

where d̂ = d − f(mn) + Jmn . Although mn+1 is obtained directly
as the solution to (4) the result is exactly equivalent to solving (3)
for the change in the model at step n + 1, and adding the result
to mn. A more substantive difference is that in the Occam scheme
step length control is achieved by varying ν, computing a series
of trial solutions, and choosing the regularization parameter so that
data misfit is minimized. An advantage of this approach is that ν

is determined as part of the search process, and at convergence
one is assured that the solution attains at least a local minimum of
the model norm ||m|| = (mT m)1/2, subject to the data fit attained
(Parker 1994). The Occam scheme can also be implemented in the
data space (Siripunvaraporn & Egbert 2000; Siripunvaraporn et al.
2005). The solution to (4) can be written as

mn+1 = JT bn ; (JJT + νI)bn = d̂, (5)

as can be verified by substituting (5) into (4) and simplifying. This
approach requires solving an Nd × Nd system of equations in the
data space instead of the M × M model space system of equa-
tions (4), and can thus be more efficient if the model is heavily
overparametrized.

Computing the full Jacobian J required for any direct GN algo-
rithm is a very demanding computational task for multidimensional
EM problems, since (as we shall see in Section 3) the equivalent
of one forward solution is required for each row (or column) of J.
An alternative is to solve the normal eqs (4) or (5) with a memory
efficient iterative Krylov-space solver such as conjugate gradients
(CG). This requires computation of matrix-vector products such as
[JT J + νI]m, which can be accomplished without forming or stor-
ing J at the cost of two forward solutions (e.g. Mackie & Madden
1993). Mackie & Madden (1993), Zhang et al. (1995), Newman &
Alumbaugh (1997), Rodi & Mackie (2001) and others have used
CG to solve (3), whereas Siripunvaraporn & Egbert (2007) have ap-
plied the same approach to the corresponding data space equations
of (5).

The GN scheme requires solving normal equations derived from a
quadratic approximation to (1). Alternatively, the penalty functional
can be directly minimized using a gradient-based optimization algo-
rithm such as NLCG (e.g. Rodi & Mackie 2001; Newman & Boggs
2004; Avdeev 2005; Kelbert et al. 2008). With this NLCG approach,
one must evaluate the gradient of (1) with respect to variations in
model parameters m

∂�

∂m

∣∣∣∣
mn

= −2 JT r + 2 νmn . (6)

The gradient is then used to calculate a new ‘conjugate’ search di-
rection in the model space. After minimizing the penalty functional
along this direction using a line search which requires at most a few
evaluations of the forward operator, the gradient is recomputed.
NLCG again uses essentially the same basic computational steps as
required for solving the linearized equations (3). In particular, the
forward problem must be solved to evaluate f(m) and the residual
r must be multiplied by JT . Quasi-Newton schemes (e.g. Nocedal
& Wright 1999; Newman & Boggs 2004; Haber 2005; Avdeev &
Avdeeva 2009) provide an alternative approach to NLCG for direct
minimization of (1), with similar advantages with regard to stor-
age and computation of the Jacobian, and similar computational
requirements.

All of these schemes for minimizing (1) can be abstractly ex-
pressed in terms of a small number of basic ‘objects’ (data and

model parameter vectors, d and m), and operators (the forward
mapping f(m), multiplication by the corresponding Jacobian J and
its transpose JT (and, implicitly, the data and model covariances Cm

and Cd). Given modular computer codes which implement these
basic objects, any of the inversion algorithms outlined here, as
well as many variants, are readily implemented. In the next sec-
tions, we analyse further the discrete forward problem, and pro-
vide a finer grained general formulation of the modules required
to implement essentially any linearized inverse scheme for any
EM problem. In particular, we provide ‘recipes’ for J in terms
of more basic objects associated with the model parametrization,
the forward solver and the numerical simulation of the observation
operators.

3 DATA S E N S I T I V I T I E S

The EM forward operator f(m) generally involves two steps: (1)
Maxwell’s equations, with conductivity defined by the parameter
m are solved numerically with appropriate boundary conditions
and sources; (2) the resulting solution is used to compute predicted
data—for example, an electric or magnetic field component, TF or
apparent resistivity—at a set of site locations. For the first step,
we write the numerical discretization of the frequency-domain EM
partial differential equation (PDE) generically as

Sme = b, (7)

where the vector b gives appropriate boundary and forcing terms
for the particular EM problem, e is the N e-dimensional vector rep-
resenting the discretized electric and/or magnetic fields (or perhaps
potential functions), and Sm is an N e × N e coefficient matrix which
depends on the M-dimensional model parameter m. We take e to
represent both interior and boundary components of the discrete
solution vector, so that any boundary conditions required for the
problem are included in b. The second step then takes the form

f j (m) = ψ j (e(m), m), (8)

where ψ j is some generally non-linear, but usually simple, function
of the components of e (and possibly m).

With this general setup we have, by the chain rule,

Jjk = ∂ f j

∂mk
=

∑
l

∂ψ j

∂el

∂el

∂mk
+ ∂ψ j

∂mk
. (9)

Letting F, L, Q be the partial derivative matrices

Flk = ∂el

∂mk

∣∣∣∣
m0

L jl = ∂ψ j

∂el

∣∣∣∣
e0,m0

Q jk = ∂ψ j

∂mk

∣∣∣∣
e0,m0

, (10)

where e0 is the solution to (7) for model parameter m0, the Jacobian
at m0 can be written in matrix notation as

J = LF + Q. (11)

The jth row of L represents the linearized data functional, which
is applied to the perturbation in the EM solution to compute the
perturbation in dj. These row vectors are generally very sparse,
supported only on a few nodes surrounding the corresponding data
site. When the observation functionals are independent of the model
parameters (as they often are) Q ≡ 0. When Q is required it is
also typically sparse, but this depends on the specific nature of the
model parametrization. Although, as we show below, derivation of
expressions for L and Q can be quite involved for realistic EM data
functionals, calculation of F presents the only real computational
burden.
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To derive a general expression for F, differentiate (7) at m0 with
respect to the model parameters m. We assume that b is constant,
independent of m, although, as discussed in Appendix A (see also
Newman & Boggs 2004) some subtle issues related to this point
may arise with specific solution approaches. Then, letting e0 be the
solution of (7) at m0, and noting that the EM solution e varies as m
is varied, we obtain

Sm0

[
∂e

∂m

∣∣∣∣
m=m0

]
= − ∂

∂m
(Sme0)

∣∣∣∣
m=m0

, (12)

or

Sm0 F = P. (13)

The N e × M matrix P depends on details of both the numeri-
cal model implementation and the conductivity parametrization (as
discussed later), but is in general inexpensive to calculate, once
the solution e0 has been computed. Putting together (11) and (13),
we obtain an expression for the numerical Jacobian (or sensitivity
matrix) J for general EM problems

J = LS−1
m0

P + Q. (14)

Computing all of J would appear to require solving the induction
equation M times (i.e. applying the inverse operator S−1

m0
to each of

the columns of P.) However, simply taking the transpose of (14) we
obtain

JT = PT [ST
m0

]−1LT + QT , (15)

so the sensitivity matrix can in fact be obtained by solving the trans-
posed discrete EM system Nd times (once for each column of LT ),
the usual ‘reciprocity’ trick for efficient calculation of sensitivities
(e.g. Rodi 1976; de Lugao et al. 1997). It should also be emphasized
that for many of the inversion algorithms described in Section 2,
J is not explicitly calculated. Instead, a series of multiplications
of model space vectors by J and/or data space vectors by JT are
required. These, in turn, require implementation of the component
operators P, L, Q and the solver S−1

m0
, together with the adjoints (or

transposes) of these operators.
The EM equations are self-adjoint (except for time reversal) with

respect to the usual L2 inner product (i.e. reciprocity holds). For now
leaving aside complications regarding boundary conditions (these
are discussed in Appendix B), this implies that on a uniform grid
operator Sm is symmetric. For more general grids, the fact that the
EM operator is self-adjoint implies

ST
m = VSmV−1, (16)

where V is a diagonal matrix of integration volume elements for
the natural discrete representation of the L2 integral inner product
on the model domain (see Appendix B). Eq. (16) implies ST

mV =
VSm is a symmetric (though not Hermitian) matrix. It is easier
to compute solutions to this symmetrized problem, so solutions to
the forward problem are generally computed as e = (VSm)−1Vb
(e.g. see Uyeshima & Schultz 2000). The solution for the adjoint
problem can also be written in terms of the symmetrized inverse
operator as e = (ST

m)−1b = V(VSm)−1b; the principal difference
from the forward case is thus the order in which multiplication by
the diagonal matrix V and the symmetrized solver are called. In
general, the adjoint solver (ST

m)−1 for EM problems is trivial to
implement, once a suitably general forward solver is available.

Before proceeding, two general points require discussion. First,
we note that many of the computations in frequency-domain EM
problems are most efficiently implemented (and described) using

complex arithmetic, but the model conductivity parameter m is
real. Data might be complex (e.g. in MT a complex impedance,
formed as the ratio of electric and magnetic fields) or real (e.g. an
apparent resistivity or phase, derived from the MT impedance). As
already implicit in our formulation of the penalty functional (1), we
formally assume that all data are real, that is, real and imaginary
parts of a complex observation are separate elements of the real data
vector d, and that the basic operators f and J have been recast as real
mappings from model parameter to data vector. However, we will
frequently use complex notation and we will often be somewhat
casual in moving between real and complex variables. Thus, for
example, the frequency domain forward problem (7) will generally
be formulated and solved in terms of complex variables. P will then
be a mapping from the real parameter space to the complex space
of forcings for the forward problem, whereas L will be a mapping
from a complex, back to a real space. Both P and L can be most
conveniently represented by complex matrices, with the convention
that for L only the real part of the matrix-vector product is retained.
We discuss this more explicitly in Appendix C.

Secondly, in most cases EM data are obtained for a large num-
ber of distinct sources, that is, different frequencies and/or different
current source geometries. For example, in the case of MT, there are
data for two source polarizations and a wide range of frequencies,
whereas for controlled source problems there may be a multiplic-
ity of transmitter geometries or locations. Each of these distinct
sources, which we refer to in general as ‘transmitters’, requires
solving a separate forward problem. In most, but not all, cases these
forward problems are decoupled, so the data vector and forward
modelling operator can be decomposed into t = 1, . . . , NT blocks,
one for each transmitter

d =

⎛
⎜⎝

d1

...
dNT

⎞
⎟⎠ , f =

⎛
⎜⎝

f1

...
fNT

⎞
⎟⎠ . (17)

Here dt gives the data associated with a group of ‘receivers’, con-
sisting of possibly multiple components, at multiple locations, all
making observations of fields generated by transmitter t. Thus, with
multiple (decoupled) transmitters the Jacobian can be partitioned
into NT blocks in the obvious way, and each block can be repre-
sented as in (14), so that the full sensitivity matrix can be expressed
as

J =

⎛
⎜⎝

J1

...
JNT

⎞
⎟⎠ =

⎛
⎜⎝

L1S−1
1,mP1 + Q1

...
LNT S−1

NT ,mPNT + QNT

⎞
⎟⎠ . (18)

The matrices Pt and Qt generally depend on the solution for trans-
mitter t. If the transmitter t only specifies the source geometry, the
differential operator for the PDE St,m will be independent of
the transmitter; however, in general the transmitter will also de-
fine the forward problem to solve. An obvious example is the MT
case, where the operator depends on frequency. Only Lt and Qt de-
pend on the configuration of receivers; these also in general depend
on the forward solution, and thus on transmitter t.

There is an important complication to the simple form of (18),
most clearly illustrated by the case of 3-D MT. Here, evaluation
of the forward operator for an impedance tensor element requires
solutions for the pair of transmitters associated with two uniform
source polarizations. Thus, for 3-D MT, the rows of the Jacobian cor-
responding to a single frequency are formed from components for
two transmitters, corresponding to N–S and E–W polarized uniform
sources, coupled through the linearized measurement operators

C© 2012 The Authors, GJI, 189, 251–267

Geophysical Journal International C© 2012 RAS

 at U
SG

S L
ibraries on A

ugust 3, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


Computational recipes for EM inverse problems 255

L and Q,

J =
2∑

t=1

[
Lt S

−1
m Pt + Qt

]
. (19)

The same complication would arise for any plane wave source TF
(e.g. vertical, or intersite magnetic). Other examples of multiple
polarization EM inverse problems can be imagined, for example, al-
lowing for a combination of horizontal spatial gradients and uniform
sources (e.g. Egbert 2002; Schmücker 2004; Semenov & Shuman
2009) would require allowing for five coupled sources. Pankratov
& Kuvshinov (2010) discuss the general multiple polarization prob-
lem from a theoretical perspective, although to our knowledge, no
actual applications of the theory to inversion of real data sets have
yet been reported, beyond the standard two polarization uniform
source case.

We return to the coupled multiple polarization case in Section 5.2,
where we discuss measurement operators in more detail. Then, in
Section 6, we consider the general multiple transmitter case further,
and show more explicitly how the source and receiver configura-
tion can result in special structure for the Jacobian, which can be
exploited to improve computational efficiency. For the next few sec-
tions, we focus on the simpler case of a single transmitter, as we
develop the basic building blocks for more complex and realistic
problems.

4 D I S C R E T I Z AT I O N O F T H E
F O RWA R D P RO B L E M

To derive more explicit expressions for the operators L, P and Q,
and hence for the full Jacobian, more specific assumptions about the
numerical implementation of the forward problem (7) are required.
To motivate the general development, we consider as examples two
specific cases in detail: inversion of 2-D and 3-D MT data. We
discuss most explicitly a finite difference (FD) modelling approach,
though most of the results obtained are more broadly applicable.

Numerical schemes for solving Maxwell’s equations are often
most elegantly formulated in terms of a pair of vector fields de-
fined on conjugate grids. For example, the space of primary fields
which we denote as SP may represent the electric fields, whereas
the space of dual fields, denoted SD, represents the magnetic fields.
Even when the coupled first-order system (i.e. Maxwell’s equations)
is reduced to a second-order equation involving only the primary
field, it is worthwhile to explicitly consider the dual field also. Most
obviously, in many applications both electric and magnetic field
components are required to evaluate the data functionals. Further-
more, depending on the model formulation, the dependence of the
discrete PDE operator coefficients on the model parameter can gen-
erally be represented most explicitly through a mapping π (m) from
the model parameter space M—sometimes to SP, but in other cases
to SD, and a general treatment should allow for both cases. Bound-
ary conditions are of course a critical part of the formulation of the
forward problem. These are included implicitly in our generic for-
mula of the forward problem (7). In the following, we omit technical
details concerning implementation of boundary conditions, leaving
discussion of these issues to Appendix B.

As a first illustration, we consider FD modelling of the 3-D quasi-
static Maxwell’s equations appropriate for MT. In the frequency
domain (assuming a time dependence of eiωt), the magnetic fields
can be eliminated, resulting in a second-order elliptic system of
PDEs in terms of the electric fields alone,

∇ × ∇ × E + iωμσE = 0, (20)

Figure 1. Staggered finite difference grid for the 3-D MT forward prob-
lem. Electric field components defined on cell edges are the primary EM
field component, which the PDE is formulated in terms of. The magnetic
field components can be defined naturally on the cell faces; these are the
secondary EM field in this numerical formulation.

where ω is the angular frequency, μ is magnetic permeability and
σ is electrical conductivity, with the tangential components of E
specified on all boundaries. To solve (20) numerically in 3-D, we
consider an FD approximation on a staggered grid of dimension
Nx × Ny × Nz, as illustrated in Fig. 1 (e.g. Yee 1966; Smith 1996;
Siripunvaraporn et al. 2002). In the staggered grid formulation,
the discretized electric field vector components are defined on cell
edges (Fig. 1). In our terminology, the primary field space SP is the
space of such finite-dimensional cell edge vector fields. A typical
element will be denoted by e. As illustrated in Fig. 1, the magnetic
fields, which in continuous form satisfy H = (−iωμ)−1∇ × E, are
naturally defined on the discrete grid of cell faces. The dual-field
space SD is thus the space of discrete vector fields defined on faces.
A typical element of this space will be denoted by h.

In the staggered grid FD discretization used for (20), the discrete
magnetic and electric fields are related via

h = (−iωμ)−1C e, (21)

where C : SP �→ SD is the discrete approximation of the curl of cell
edge vectors, and (20) can be expressed in its discrete form as

[C†C + diag(iωμσ (m))]e = 0. (22)

Here, diag(v) denotes a diagonal matrix with the components of
the vector v on the diagonal, and C† : SD �→ SP is the discrete
curl mapping interior cell face vectors to interior cell edges. As
the notation indicates this operator is the adjoint of C, relative to
appropriate (i.e. volume weighted) inner products on the spaces SD

and SP. Although e is the full solution vector (including boundary
components), (22) provides equations only for the interior nodes.
Additional equations are required to constrain e on the boundary,
and to complete specification of the discrete forward operator Sm.
These details, and further discussion of C and its adjoint, are pro-
vided in Appendix B. The key point here is that the dependence of
the operator coefficients on the model parameter (which we take to
be an element of some finite-dimensional spaceM) is made explicit
through the mapping σ : M �→ SP in (22).

The 3-D EM induction forward problem can also be formulated
in terms of magnetic fields

∇ × ρ∇ × H + iωμH = 0, (23)
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256 G.D. Egbert and A. Kelbert

Figure 2. Finite difference grid for the 2-D MT TM mode forward problem.
The scalar Hx magnetic field, defined on 2-D cell corners is the primary
field. The secondary field components are Ey and Ez, defined on vertical and
horizontal cell edges, respectively.

where ρ is electrical resistivity, now with the tangential component
of the magnetic fields specified on boundaries. With this formulation
(e.g. Mackie et al. 1994; Uyeshima & Schultz 2000), H would be the
primary field, and the electric field E = ρ∇ × H would be the dual
field. Using an analogous staggered grid FD discretization, with
magnetic field components defined on cell edges, and electric field
components defined on cell faces, the discrete induction equation
now takes the form

[C†diag(ρ(m))C + diag(iωμ)]e = 0. (24)

In this case, the dependence of the coefficients on model parameter
m is made explicit through the mapping to the dual-field space
ρ : M �→ SD. Note that for both the electric and magnetic field
formulations e represents the primary field, and h the dual field.
Thus, in (24), e represents the discrete magnetic field H, and h
would represent the discrete electric field.

It is also instructive to consider the 2-D MT inverse problem. Now
there are effectively two distinct modelling problems: for transverse
electric (TE) and transverse magnetic (TM) modes, with electric and
magnetic fields, respectively, parallel to the geologic strike. The TE
mode case is essentially identical to the 3-D electric field formula-
tion of (20)–(22). The TM mode case, which is solved in terms of
the magnetic field instead of the electric field, is more instructive
with regard to generalization. In the TM mode, the magnetic field
parallels the geological strike (x) and (23) can be reduced to a scalar
PDE in the y-z plane

∂yρ∂y Hx + ∂zρ∂z Hx + iωμHx = 0, (25)

with Hx specified on boundaries.
As for the 3-D problems, for the discrete 2-D problem we can

define finite-dimensional spaces of primary (SP) and dual (SD) EM
fields. Now the primary field is Hx, defined on the nodes (corners) of
the 2-D grid, and the dual fields are the electric field components Ey

and Ez defined on the vertical and horizontal cell edges (Fig. 2). A
natural centred FD approximation of (25) can be written in terms of
a discrete 2-D gradient operator G : SP �→ SD and a 2-D divergence

operator D : SD �→ SP. Using e ∈ SP to denote the primary discrete
EM field solution (Hx), we have a more explicit form of (7) for this
discrete TM mode implementation,

[D diag (ρ(m)) G + iωμI] e = 0, (26)

with additional equations again required to specify boundary
conditions.

In most other FD or finite volume modelling approaches, for ex-
ample, with Maxwell’s equations cast in terms of vector potentials,
similar (although potentially more complicated) sets of conjugate
spaces can be defined, the differential operator can be decomposed
into discrete approximations to first-order linear differential oper-
ators which map between conjugate grids, and the dependence of
discrete operator coefficients on an abstract model parameter space
can be described explicitly through a mapping π : M �→ SP,D.
Finite-element approaches to EM modelling will result in simi-
lar structures. For example, the space of linear edge elements (or
more properly, the degrees of freedom associated with these ele-
ments; Nedelec 1980) can be taken as the primary space, repre-
senting the discrete electric field. The natural dual space is then the
space of face elements, representing the discrete magnetic field (e.g.
Rodrigue & White 2001). The natural model parameter mapping
then defines conductivity associated with each edge degree of
freedom.

5 C O M P O N E N T S O F T H E JA C O B I A N

5.1 Matrix P

We can give an explicit expression for the operator P, assuming the
forward operator Sm can be written in the general form

Sme ≡ S0e + U (π (m) ◦ Ve), (27)

where S0, U and V are some linear operators that do not depend
on the model parameter vector m, π (m) is a (possibly non-linear)
operator that maps the model parameter space M to the primary
or dual grid, and ( ◦ ) denotes the component-wise multiplication
of the two vectors in SP,D (also known as the Hadamard product).
Note that on an FD grid, Sm (and hence S0 and V) act on a full
solution vector that includes both the interior and boundary edges
(see Appendix B). All of the examples outlined earlier are special
cases of (27), as we will discuss.

Assuming (27) and recalling the definition of P from (12) and
(13), we find

P = − ∂

∂m
(Sme0)

∣∣∣∣
m0

= −U

(
∂π

∂m

∣∣∣∣
m0

◦ Ve0

)
, (28)

= −U

(
Ve0 ◦ ∂π

∂m

∣∣∣∣
m0

)
, (29)

= −Udiag(Ve0)
∂π

∂m

∣∣∣∣
m0

. (30)

Writing �m0 for the Jacobian of the (in general, non-linear) model
parameter mapping π (m) evaluated at the background model pa-
rameter m0, we have

P = −Udiag(Ve0)�m0 , (31)

PT = −�T
m0

diag(Ve0)UT . (32)
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Note that only the operator �m depends on the details of the
model parametrization—the other terms depend only on the numer-
ical discretization of the governing equations. Eqs (31) and (32)
provide broadly applicable recipes for implementation of the op-
erators P and PT , as illustrated in the following examples. If the
dependence of the forward operator on the model parameter can-
not be cast as a special case of (27), similar formal steps could
almost certainly be used to derive appropriate expressions for these
operators.

5.1.1 Example: 2-D MT

For the 2-D TM problem (26), the PDE coefficients depend on
the model parameters through ρ : M �→ SD, that is, the resistiv-
ity ρ(m) defined on the dual grid, cell edges. To be specific, we
consider the simplest model parametrizations, with conductivity or
log conductivity for each cell in the numerical grid an indepen-
dent parameter. From physical considerations, it is most reasonable
to compute the required edge resistivities from cell conductivities
by first transforming to resistivity, and then computing the area
weighted average of resistivities of the two cells on either side of
the edge. Representing the averaging operator from 2-D cells to cell
sides as WTM, and letting (m)−1 denote the component-wise inverse
of the model parameter vector, we then have

ρ(m) = WTM(m)−1, (33)

ρ(m) = WTMexp(−m), (34)

for linear and log conductivity, respectively. The model operator of
(26) can be cast in the general form of (27) with the identifications
S0 ≡ −iωμI, U ≡ D, V ≡ G and π (m) ≡ ρ(m), where D and G
are the discrete 2-D divergence and gradient operators defined in
Section 4. Thus, we obtain the expressions for P and PT in the 2-D
TM mode case.

P = −Ddiag(Ge0)�m0 , (35)

PT = −�T
m0

diag(Ge0)DT , (36)

where �m0 = −WTM[diag(m0) ]−2 for the parametrization in terms
of linear conductivity, or �m0 = −WTM[diag(exp(−m0)) ] for log
conductivity.

5.1.2 Example: 3-D MT

We again assume the simplest model parametrization, with conduc-
tivity, or the natural logarithm of conductivity, specified indepen-
dently for each of the M = NxNyNz cells in the numerical grid.
The discrete operator of (22) requires conductivity defined on cell
edges, where the electric field components are defined. For physical
consistency (current should be conserved), the edge conductivities
should represent the volume weighted average of the surrounding
four cells. Let W be the N e × M matrix representing this weighted
averaging operator, a mapping from M to SP. Then, the conduc-
tivity parameter mapping is given by σ (m) = Wm or σ (m) =
Wexp(m), for the cases of linear and log conductivity, respectively.

Eq. (22) can be seen to be a special case of (27) with the identi-
fications S0 ≡ C†C, U ≡ iωμI, V ≡ I and π (m) ≡ σ (m), and we
have

P = diag(−iωμe0) �m0 , (37)

PT = �T
m0

diag(iωμe0), (38)

where �m0 = W for linear conductivity, and �m0 =
W[diag(exp(m0))] for logarithmic conductivity. Note that the trans-
poses of the averaging operators W and WTM represent mappings
from cell edges to cells, a weighted sum of contributions from all
edges that bound a cell.

5.2 Matrices L and Q

We turn now to the matrices L and Q, which represent the linearized
observation process, as it is applied to the discrete numerical forward
solution.

5.2.1 L: general case

The very simplest sort of EM data is an observation of the primary
field at a single location (e.g. ε = Ey(x)), which can be represented
as a local average of the modelled primary field

ε = (λP)T e. (39)

Here λP ∈ SP is a sparse vector of interpolation coefficients, aver-
aging from the discrete primary grid to the observation point x. A
point observation of the dual field (e.g. η = Hx(x)) is only slightly
more complicated. Assuming, as will generally be the case, that the
dual fields can be written as h = Te, where T : SP �→ SD is a
discrete differential operator (e.g. see 21), we have

η = (λD)T Te, (40)

where λD ∈ SD is again a sparse vector of interpolation coefficients,
now representing averaging on the dual grid. For some problems,
T ≡ Tπ (m) will depend on the model parameter through π (m) (see
Section 5.2.4 for an example). It is also possible for the interpolation
coefficients λP and/or λD to depend on the model parameter m. We
will return to these complications, which are accounted for in the
operator Q, below.

Note that for a finite-element formulation, where the solution
is represented in terms of a discrete set of basis functions, field
component evaluation functionals would have the same form (sparse
vectors defined on the primary or dual space), but would have a
slightly different interpretation—that is, the non-zero components
of the evaluation functional for any location would be computed
by evaluating (at this point) the basis functions for all degrees of
freedom associated with the containing element.

Together, (39) and (40) give the basic evaluation functionals for
the fundamental observables (point measurements of magnetic and
electric fields) in any EM problem. For controlled source problems,
where the data are typically just point measurements of the primary
or dual field, these evaluation functionals are already the rows of L.
More generally, EM data are functions of both electric and magnetic
components, at one or more locations. The most obvious example
is the impedance, the local ratio of electric and magnetic fields.
Other examples include interstation magnetic TFs, network MT
accounting for the geometry of long dipoles (Siripunvaraporn et al.
2004), or horizontal spatial gradient methods based on array data
(Schmücker 2003; Semenov & Shuman 2009). Inevitably, real data
must be based on a discrete set of observations of the magnetic and
electric fields, so the general EM data functional can be represented
as

ψ j (e(m), m) ≡ γ j (ε1(m), . . . , εKP (m),

η1(e(m)), . . . , ηKD (e(m))), (41)

C© 2012 The Authors, GJI, 189, 251–267

Geophysical Journal International C© 2012 RAS

 at U
SG

S L
ibraries on A

ugust 3, 2015
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


258 G.D. Egbert and A. Kelbert

where εk , k = 1, . . . , KP and ηk , k = 1, . . . , KD are sets of primary
and dual components computed at one or several points in the model
domain, as εk = (λP

k )T e and ηk = (λD
k )T Te , respectively.

From (10), the jth row of L is then given by

l j = ∂ψ j

∂e

∣∣∣∣
e0,m0

=
KP∑

k=1

∂γ j

∂εk

∂εk

∂e

∣∣∣∣
e0,m0

+
KD∑
k=1

∂γ j

∂ηk

∂ηk

∂e

∣∣∣∣
e0,m0

, (42)

=
KP∑

k=1

aP
jk(λP

k )T +
KD∑
k=1

aD
jk(λD

k )T T, (43)

where aP
jk and aD

jk are the partial derivatives of the jth data functional
with respect to the kth local field components. These coefficients
depend only on the details of the data functional formulation, and
the background EM solution e0. Eq. (43) thus implies that we can
decompose L into two sparse matrices as

L = AT �T , (44)

with

A =
[

AP

AD

]
and � = [ �P TT �D ]. (45)

Here, L is a sparse Nd × N e matrix that maps the EM solution to the
data space, as in Eq. (14). A is a K × Nd sparse matrix (K = KP +
KD), such that the non-zero elements in its jth column are the coeffi-
cients ajk , the derivatives of the data functionals with respect to each
of the relevant local magnetic or electric field components. Finally,
� is an N e × K sparse matrix, with columns λk ∈ SP containing
the field component evaluation functionals, that is, the interpola-
tion coefficients required to compute the kth electric/magnetic field
component at a point from the primary EM field.

Thus, � depends only on the observation locations for each of
the K local field components (and possibly on the model parame-
ter m0). Observation functionals (non-linear or linearized) for any
sort of EM data will be constructed from the same field compo-
nent functionals, which are closely tied to the specific numerical
discretization scheme used. A, however, depends on details of the
observation functionals (e.g. impedance versus apparent resistivity),
and will also depend, in general, on the background EM solution
used for linearization, e0. However, A (which is essentially a lin-
earization of γ ) does not depend on the details of the numerical
implementation of the forward problem.

5.2.2 L: multivariate TFs

Multivariate TFs are an important special case of non-linear data
functionals which deserve a closer look. Plane wave source TFs pro-
vide the most important (and, in fact, only widely applied) example.
In this case, two independent sources are assumed, corresponding
to spatially uniform sources of a fixed frequency polarized in the
x- and y-directions. As a consequence of the linearity of the in-
duction equations, under this assumption any point observation of
the EM fields can be linearly related to two reference components,
through a frequency-dependent TF. Examples include the rows of
the impedance tensor, such as

Ex = Zxx Hx + Zxy Hy, (46)

vertical field TFs, and intersite magnetic TFs. TF components such
as Zxx and Zxy, which are estimated from time-series of electric and
magnetic fields observed at a single site, provide the basic input
data for 3-D MT inversion.

For completeness, we consider the general case where a generic
predicted component, which we denote as Y , is related to Np pre-
dicting variables X1, . . . , X Np via the TF

Y = θ1 X1 + · · · + θNp X Np . (47)

To evaluate the components of the complex TF vector � =(
θ1, . . . , θNp

)T
it is necessary to solve forward problems for each

of the assumed source configurations—that is, forward solutions
e1, . . . , eNp for Np transmitters are required. To compute the TF, we
must evaluate Y and X j, j = 1, . . . , Np for each of these forward
solutions. Here, we represent this as

Yi = λT
Y ei Xi j = λT

X j
ei i = 1, . . . , Np. (48)

Then, if Y denotes the vector of predicted components for the Np

transmitters and X denotes the corresponding Np × Np matrix of
predicting variables, the TF can be computed as

� = X−1Y. (49)

Note that, in general, the evaluation functionals λX j ∈ SP might be
more complicated than the simple interpolation operators consid-
ered previously—for example, for the usual plane wave source case
the predicting components are typically taken to be magnetic fields
at the local site, which for the 3-D MT example we have considered
would require computation of the secondary field (multiplication
by the operator T) followed by interpolation. And for more exotic
cases such as the generalized horizontal spatial gradient (HSG) TF
(Egbert 2002; Schmücker 2003, 2004; Semenov & Shuman 2009;
Pankratov & Kuvshinov 2010) the predicting components would
involve magnetic fields measured at multiple sites, used to form
some sort of estimate of uniform and gradient field components.
We thus assume only that these are sparse vectors representing lin-
ear functionals defined on SP.

Taking partial derivatives of � with respect to ei we find, after
some simplification

∂�

∂ei
= X−1

0

[
∂Y

∂ei
− ∂(X�0)

∂ei

]
. (50)

In (50), the subscript zero denotes TFs and predicting components
evaluated for the background forward solution. Note that the ex-
pression in brackets is a matrix of size Np × N e (N e = dimension
of ei), but only the ith row is non-zero (only the ith component of Y
and row of X depend on solution ei). This row takes the form

λT
Y − θ1λ

T
X1

− · · · − θNpλ
T
X Np

, (51)

which is independent of the source polarization index i.
As we noted at the end of Section 3, rows of L for TF components

couple the terms S−1
m Pi for multiple transmitters. We can now give an

explicit form for this coupling, considering only a single predicted
component Y , so that there are Np complex rows of the matrix L,
one for each component of the TF. L can also be divided into Np

blocks of columns, one for each transmitter as in (19). From (50) and
(51), L can be written in terms of X−1

0 and block diagonal matrices
as

L = X−1
0

⎡
⎢⎢⎢⎣

� 0 0

0
. . . 0

0 0 �

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

�T 0 0

0
. . . 0

0 0 �T

⎤
⎥⎥⎥⎦ , (52)

where

� = [ 1 −�T ] � =
[
λT

Y λT
X1

. . . λT
X Np

]
. (53)
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The product of the first two matrices corresponds to AT (and the
rightmost of course to �) in (44). The more explicit form here
more clearly defines the coupling between transmitters, and has
important implications for efficient calculation of the full Jacobian,
as we discuss further in Section 6.

5.2.3 Matrix Q

When either the evaluation functionals or the field transformation
operator T have an explicit dependence on the model parameter
(denoted in the latter case by Tπ (m)) there is an additional term in
the sensitivity matrix, which we have denoted Q. The jth row of this
matrix is given by

q j = ∂ψ j

∂m

∣∣∣∣
e0,m0

=
⎡
⎣ KP∑

k=1

aP
jk

∂
(
λP

k

)T
e0

∂π

∣∣∣∣∣
π (m0)

+
KD∑
k=1

aD
jk

×
⎛
⎝ ∂

(
λD

k

)T
Tπ (m0)e0

∂π

∣∣∣∣∣
π (m0)

+ (
λD

k

)T ∂Tπ (m)e0

∂π

∣∣∣∣
π (m0)

⎞
⎠

⎤
⎦ �m0 ,

(54)

where π (m) is the (possibly non-linear) model parameter mapping
to the dual or primary grid, and �m0 is the Jacobian of this mapping.
Defining

T̃π (m0),e0 = ∂

∂π
[Tπ (m)e0]

∣∣∣∣
π (m0)

, (55)

�̃T
P = ∂

∂π
[(�P)T e0]

∣∣∣∣
π (m0)

(56)

and

�̃T
D = ∂

∂π
[(�D)T Tπ (m0)e0]

∣∣∣∣
π (m0)

. (57)

Eq. (54) can be given in matrix notation

Q = [
AT

P AT
D

] [
�̃

T

P

�̃
T

D + �T
DT̃

]
�m0 . (58)

If the interpolation coefficients are independent of the model pa-
rameters (as will be most often the case) this reduces to

Q = AT
D�T

DT̃π (m0),e0�m0 . (59)

5.2.4 Example: 2-D MT

For 2-D MT, the fundamental observation is an impedance, the
ratio E/B of orthogonal components of the electric and magnetic
fields. For the TE mode, Ex corresponds to the primary (modelled)
field e, whereas Hy is the secondary field, which is computed as
h = TEe. The secondary field mapping can be given explicitly as
TE = (−iωμ)−1OG, where O is a diagonal matrix with entries
+1 and −1 for components corresponding to y- and z-edges, re-
spectively. Columns of �P and �D now represent bilinear spline
interpolation from the 2-D grid nodes and edges, respectively,
to the data sites. These are independent of the model parameter,
so Q ≡ 0.

The impedance can be written explicitly as

Z ≡ γ j (e) = λT
E e

λT
H TE e

, (60)

where e is the (primary) electric field, and λE and λH are, respec-
tively, columns of �P and �D, and represent bilinear spline in-
terpolation functionals on node (primary) and edge (dual) spaces.
From (42), the row of L corresponding to an impedance is found
to be

l j ≡ lZ = (
λT

H TE e0

)−1
λT

E −
[
λT

E e0/
(
λT

H TE e0

)2
]
λT

H TE . (61)

For the TM mode, �P and �D are the same as in the TE case, but
the roles of primary and dual fields are reversed, so that

Z ≡ γ j (e) = λT
E TH e

λT
H e

, (62)

e now denoting the (primary) magnetic field. Also the field trans-
formation operator is now TH = diag[ρ(m)]OG, and thus depends
on the model parameter, so Q will be non-zero. Row j of L is now

l j ≡ lZ = −
[
λT

E TH e0/
(
λT

H e0

)2
]
λT

H + (
λT

H e0

)−1
λT

E TH , (63)

whereas the corresponding row of Q is found to be

q j ≡ qZ = (λT
H e0)−1λT

E diag[OGe0]�m0 . (64)

Note that the expressions for the scalar impedance for 2-D MT can
also be derived as a special (degenerate) case of the multivariate
TFs considered earlier.

Linearized data functionals for apparent resistivity and phase are
discussed in Appendix C.

5.2.5 Example: 3-D MT

For the 3-D MT problem formulated in terms of the electric fields
(Section 5.1.2), the discrete operator T = (iωμ)−1C maps from
edges to faces, computing magnetic fields through application of
the discrete curl operator. Interpolation from edges and faces to an
arbitrary location within the 3-D staggered grid model domain can
be based on something simple such as trilinear splines. In this case,
both � and T are independent of m, and so Q ≡ 0.

L can be readily derived as a special case of the multivariate TF
with Np = 2. Each row of the 2 × 2 impedance tensor is a separate
TF—that is, Y in the general development of Section 5.2.2 corre-
sponds to Ex for the first row and Ey for the second. The predictor
variables X 1, X 2 correspond to the local horizontal magnetic field.
Thus, λT

Xi
= λT

Hi T, i = 1, 2 are functionals for computing the two
magnetic field components and λT

Y = λEk for rows k = 1, 2 of the
impedance. The 2 × 2 matrix X thus has elements Xi j = λT

Hi Te j

(same for both rows of the impedance). From (52) and (53), the row
of the (complex) L corresponding to impedance element ki is[

X−1
i1

(
λT

Ek − Zk1λ
T
H1T − Zk2λ

T
H2T

)
X−1

i2

(
λT

Ek − Zk1λ
T
H1T − Zk2λ

T
H2T

)] (65)

where the components of X, and the impedance components Zkj are
calculated from the background solution. Note that this row of L
has two blocks (each of length N e), which multiply perturbations
to the two polarizations δej, j = 1, 2, and are summed to compute
the total perturbation δZki to the impedance element. Rows of L for
vertical field TFs, which relate Hz to the two local horizontal compo-
nents of the magnetic field, have the same form, with λHz replacing
λEk and the two components of the vertical field TF replacing Zkj,
j = 1, 2.
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6 M U LT I P L E T R A N S M I T T E R S

We now give a more explicit discussion of how all of the pieces
of J fit together in the case of multiple transmitters, allowing for
the sort of coupling that occurs with multivariate TFs. In general,
there will be NT transmitters, corresponding to different source
geometries and/or different frequencies. There will also be a total of
NR measured components of the EM field at some location. Note that
these would correspond to the actual field components observed.
Some or all of the data actually used for the inversion would be
constructed from these, for example, through TFs, with possible
further transformation to apparent resistivity and phase. In general,
subsets of receiver locations may be used for each transmitter. The
full Jacobian for all data can then be written

J = AT

⎡
⎢⎢⎢⎣

�T 0 0

0
. . . 0

0 0 �T

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

S−1
1 0 0

0
. . . 0

0 0 S−1
NT

⎤
⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

P1 0 0

0
. . . 0

0 0 PNT

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

Q1 0 0

0
. . . 0

0 0 QNT

⎤
⎥⎥⎥⎦ ,

(66)

where � is the measurement operator, evaluating solutions for each
transmitter for all of the NR receivers. The matrices Pt and Qt are
generally different for each transmitter t, as they depend on the for-
ward solution et, computed for the reference model parameter used
for the Jacobian calculation (see 12). Two transmitters, indexed by
t1, t2, which only differ in the geometry of the source will typically
have identical forward operators, that is, St1 = St2 (though this is
not true for the 2-D MT case, where the two source polarizations
are decoupled, and different forward problems are solved for TE
and TM modes). The solution operators will always be different
for transmitters corresponding to different frequencies. Complica-
tions such as the possibility that not all receiver/transmitter pairs
are observed, coupling between transmitters through TFs, and fur-
ther non-linear transformations of data are embedded in the matrix
A. This matrix will generally be very sparse, with diagonal blocks
coupling at most a few transmitters.

Perhaps the simplest specific example of (66) is the controlled
source cross-well imaging problem (e.g. Alumbaugh & Newman
1997). In this case, transmitters are point magnetic dipoles in one
well, and observations are point measurements of the magnetic
field in another well. Assuming all transmitter–receiver pairs are
observed, the total number of data is Nd = NT NR, and we may take
A = I. Assuming further that all data are taken at a single frequency,
the forward operators are all identical, St ≡ S. Then (assume Q ≡
0) the transpose of the full Jacobian can be computed as

JT = [
P1(ST )−1� P2(ST )−1� . . . PNT (ST )−1�

]
. (67)

Thus, any of the NT NR rows of JT can be constructed from NT

forward solutions (required to form Pt, t = 1, . . . , NT ), and NR

adjoint solutions (one for each column λr of �). At the same time,
the gradient of the data misfit can be written in terms of the residual
vector (as in 6)

JT r =
∑

t

Pt (S
T )−1�rt , (68)

where rt are the components of the residual for transmitter t. Thus,
calculation of the gradient (as required for each step in an NLCG
or quasi-Newton search scheme) will require NT adjoint solutions

(and again NT forward solutions, for Pt, t = 1, . . . , NT ). When
NT ≈ NR (as, e.g., in the cross-well EM imaging example) the
full Jacobian can thus be had for the same cost (at least in terms
of calls to the forward/adjoint solver) as the gradient alone. Al-
though storing the full Jacobian (of size NT NR × M) might be
prohibitively expensive in terms of memory, by computing and
saving the NT forward and NR adjoint solutions, a GN scheme
can be implemented, solving the normal equations with CG as in
Alumbaugh & Newman (1997). This seems certain to be more
practical and efficient than direct optimization schemes such as
NLCG and quasi-Newton. Extensions of the simple case discussed
here, to allow for multiple frequencies or more complex sam-
pling patterns with only some transmitter–receiver pairs, would be
straightforward.

In the simple cross-well example, the Jacobian ‘factors’ into
components dependent on the transmitter and receiver with the
sensitivity for data dt,r (where t and r are, respectively, the trans-
mitter and receiver indices) is Pt(ST )−1λr. A similar factorization
will apply to any problem where there are transmitters with a single
frequency (more precisely, with identical forward solvers), but mul-
tiple source geometries. Many active source problems, in particular
marine CSEM, would fall into this category.

This source–receiver factorization also applies to the case of
multivariate TFs, and more complicated data derived from them.
Consider the Np rows of J associated with the components of a
single TF �. These rows of J can be represented in the general
form (66), with a single forward operator St ≡ S. From (52), we
thus have

J� = X−1

×

⎡
⎢⎢⎣

��T 0 0

0
. . . 0

0 0 ��T

⎤
⎥⎥⎦

⎡
⎢⎢⎣

S−1 0 0

0
. . . 0

0 0 S−1

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

P1 0 0

0
. . . 0

0 0 PNp

⎤
⎥⎥⎦

(69)

or, for the transpose

JT
� =

[
PT

1 (ST )−1��T . . . PT
Np

(ST )−1��T
] (

X−1
)T

. (70)

Thus, all Np rows of J require only a single adjoint solution, which
must then be multiplied by each of the matrices Pt, t = 1, . . . , Np.
The resulting model space vectors are then coupled, through the
Np × Np matrix (X−1)T to form the Np rows of J�. For multivariate
TF problems, there will generally be several predicted components
at a single site, each associated with an Np component TF. Each
of these TFs will require a separate adjoint solution, (ST )−1� j�

T
j

since � and � will be different for each TF, but all share the
same transmitter dependent matrices Pt, and the same coupling
matrix.

In the context of the 3-D MT problem, one has two TFs, cor-
responding to the two rows of the impedance tensor, and hence
two adjoint solutions are required to compute sensitivities for the
full impedance tensor. If vertical field TFs are also included, there
would be a third TF, and a third adjoint solution would be re-
quired. A direct calculation of sensitivities through the transposed
eq. (15), taking account of (19) but ignoring the factorization of
L used to derive (69) and (70), would suggest that two adjoint
solutions are required for each of the four components of the
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impedance tensor. This would imply a total of eight adjoint so-
lutions to evaluate the full sensitivity for an impedance tensor
at one location/frequency. Thus, the more careful analysis given
here suggests substantial efficiencies, reducing the total number
of adjoint solutions for a full calculation of the Jacobian by a
factor of 4.

Sensitivities for any data derived from impedance tensor com-
ponents can obviously be constructed from the adjoint solutions
(ST )−1� j�

T
j , j = 1, 2 essentially as in (70) but with a modified

coupling matrix, analogous to (X−1)T . An example would be the
four components of the phase tensor (e.g. Caldwell et al. 2004),
which is a non-linear function of the full impedance.

7 M O D U L A R I M P L E M E N TAT I O N

The mathematical developments of previous sections provide a
framework for implementation of a general modular system for
inversion of frequency-domain EM data. Here, we provide an
overview of the organization and principal features of such a system,
which we have developed in Fortran 95. A more detailed descrip-
tion of this modular system (hereinafter referred to as ModEM)
will be provided in a future publication. Although a purist might
argue that it is not strictly possible to write object-oriented code in
Fortran 95 we have based our development on this programming
paradigm, following approaches appropriate for the Fortran lan-
guage as described in Akin (2003). We also use the terminology of
this approach in our discussion here. As with most object-oriented
programming our goals in ModEM are code reuse for multiple re-
lated applications, and providing templates for rapid development
of new applications.

As discussed in detail earlier, the basic data objects which are
manipulated in any inversion scheme include model (m) and data
(d) vectors, and EM solution and source fields (e and b). These are
treated in ModEM as essentially ‘abstract data types’, encapsulated
data structures with details of the internal representation effectively
hidden from higher level routines which manipulate them. For each
of these classes, a standard series of methods must be defined (cre-
ation, destruction, vector space methods, dot products, etc.) with
standardized interfaces. The inversion algorithms then apply oper-
ators such as f, J, S−1, L, P, Q, Cm, which are implemented as
methods that interact with the basic objects m, d, e, b. Standard-
izing type names and interfaces allows multiple instances of these
operators and objects to be used interchangeably within the inver-
sion system, and at the same time, simplifies development of any
inversion algorithm that can be described in terms of these compo-
nents.

Components in ModEM can be usefully organized into three lay-
ers, as illustrated in Fig. 3. On the left-hand side of the figure are
components which define the basic discretization and numerical
solution approach used for the forward problem, whereas the com-
ponents on the right-hand side are more generic, constructed to be
directly applicable to a wide range of EM inverse problems. These
are separated by an interface layer, which serves to hide problem
and implementation specific details from the more generic inversion
modules. Each layer in the figure contains several boxes (represent-
ing modules or groups of modules in our actual implementation)
which are worth distinguishing at the level of this overview.

Two boxes represent the core of the numerical implementation
layer. The first includes the grid, data structures that define the pri-
mary and dual-field spaces SP, SD, field component interpolation
functionals (�), and the primary to dual mapping T—everything

needed to define the discrete formulation of the forward problem.
The second provides the actual solver for these discretized equa-
tions. To be useful for the inversion system this solver, which will
be used for both forward and sensitivity calculations, must allow
for general sources and boundary conditions, and for solution of
the transposed or adjoint system, as well as the usual forward prob-
lem. As noted earlier, the PDEs of EM are intrinsically symmetric,
so supporting adjoint solutions is typically almost trivial, although
there are some details (e.g. associated with non-uniform grids) that
may require some care (e.g. Kelbert et al. 2008).

No specific data type or procedure names from the core nu-
merical implementation modules are referenced by more generic
components of ModEM, so there is a great deal of flexibility in
actual implementation at this base level. We have so far used
ModEM with three distinct numerical models: the 3-D (electric
field) and 2-D (TE and TM mode) Cartesian coordinate FD mod-
els discussed earlier, and a 3-D spherical coordinate FD model
for global induction studies formulated in terms of the magnetic
fields. Source code from previously developed applications were
used for the 2-D MT and spherical models, which are described by
Siripunvaraporn & Egbert (2000) and Uyeshima & Schultz (2000),
respectively. Relatively minor modifications to these codes were re-
quired to ensure the required generality of the solver, and to simplify
interfacing with other components of ModEM.

The model space is also placed on the left-hand side of Fig. 3, as
important components of this module—in particular the mappings
π and �—are strongly dependent on details of the numerical for-
mulation of the forward problem. At the same time, the model space
is heavily used by higher level components of ModEM, including
the generic inversion modules, and possibly the data functionals (see
Section 5.2). Thus, any implementation of the model space mod-
ule must follow certain conventions to maintain consistency with
the rest of the system, for example, providing methods with stan-
dardized names and interfaces for linear algebra, dot products and
covariance operators. We view the model parametrization and regu-
larization (also part of this module) as something that should be very
easy to extend and modify to accommodate a diversity of interpre-
tation problems. For example, the simple conductivity parametriza-
tions discussed earlier could be modified to enforce bounds on
conductivities, for example, by replacing the logarithm by a differ-
ent conductivity transformation as in Avdeev & Avdeeva (2009),
or additional parameters to allow explicitly for near-surface distor-
tion (de Groot-Hedlin 1995) could be added. Completely different
model parametrizations (e.g. in terms of interface positions between
bodies of known conductivity; Smith et al. 1999; de Groot-Hedlin
& Constable 2004) or regularization approaches may be appropri-
ate in specific situations. To simplify modification and extension,
we adopt a strict object-oriented approach for the model parameter
space module, hiding all details of a specific instantiation from the
rest of the modular system (i.e. in Fortran 95 all attributes of m are
‘private’). Note that only the model parameter mappings depend
explicitly on the numerical discretization of the EM fields; the rest
of the model space implementation is independent of these details
and could in principal be used with multiple numerical modelling
approaches.

The generic inversion layer is represented by the three boxes on
the right-hand side in Fig. 3. The inversion box represents the actual
search algorithms, which are written in a generic way using methods
from data space, model space and sensitivity modules. Several of the
algorithms discussed in Section 2 have been implemented, including
the NLCG scheme (e.g. Rodi & Mackie 2001) and the Data space
CG scheme of Siripunvaraporn & Egbert (2007). Other inversion
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262 G.D. Egbert and A. Kelbert

Figure 3. Schematic overview of the Modular Electromagnetic Inversion (ModEM) system. Boxes represent modules (or groups of modules, in actual
implementation), with dependencies defined by arrows. Data objects and operators, as defined in Sections 3–5, are listed in the appropriate module, along with
a brief summary of function. Tx, Rx denote the transmitter and receiver indices, respectively.

approaches can easily be added. Of course, the same inversion
routines can be used for multiple problems: the NLCG code has
been applied to 2-D and 3-D MT, simple controlled source EM, and
global induction problems in spherical coordinates.

The data space is also part of the generic layer. This is orga-
nized, following the discussion of Sections 5.2 and 6, to allow for
multicomponent data, observed with multiple receivers, and with
sources generated by multiple transmitters. Elements of the data
vector d are thus described by three attributes: transmitter, data
type and receiver. Transmitter uniquely defines the forward prob-
lem that must be solved, including both the specific PDE as well as
the sources and boundary conditions. Receiver defines, in conjunc-
tion with data type, the measurement process that must be applied
to the forward solution to allow comparison between model and
data. The three attributes are treated abstractly at the level of the
generic inversion modules, with data vector components carrying
only pointers to the actual metadata associated with these attributes
(e.g. site location, source polarization, transmitter location, etc.)
which are stored as entries in lists, or dictionaries. This approach
allows a generic format for data storage, hides extraneous details
from the inversion modules, and still provides enough information
about the transmitter/receiver structure so that forward modelling
and sensitivity computations can be organized efficiently.

These tasks are managed by routines in the sensitivity module,
which implement the full forward mapping f and operations with the
Jacobian J or its transpose. For example, the transmitter, receiver and
data type attributes can be used to ensure that each required forward
problem is solved once (and only once), and then used to compute
predicted data (or implement appropriate sensitivity calculations)
for all necessary receivers and data types. For some cases (CSEM,
and even to some extent 3-D MT; see Section 6), computations with
the Jacobian can be ‘factored’ for efficiency into components that
depend on the receiver and on the transmitter. In ModEM, such
efficiencies can be implemented through specialized versions of the

sensitivity module. A coarse grained parallelization (over transmit-
ters, or unique forward problems, similar to the approach used in
Siripunvaraporn & Egbert 2009) is also implemented through the
sensitivity module. This allows the parallel version to be used with
only minor modifications for a wide range of different applications,
and to some extent different search algorithms, including those to
be developed in future.

The middle layer in Fig. 3 provides an interface between the
generic inversion modules, and the problem and numerical imple-
mentation specific base modules. In particular, the EM solution and
source terms e and b are defined at this level in the solution space
module. These objects must always meet the interface standards of
the generic layer, but the implementation of a particular instance
of these objects will be problem-specific, and built on base layer
routines. Source and receiver details for each specific application
are also defined in this interface layer. Thus, inversions for different
EM methods may be developed using the same base of numerical
discretization modules (and of course the same inversion modules)
through modifications to the interface layer.

For example, we have used the 3-D Cartesian FD code base for
both MT and CSEM. The fundamental EM solution and source
objects have distinct implementations for the two methods. For a
single transmitter (frequency) in the 3D MT problem, b represents
boundary conditions for two orthogonal plane wave sources, and e
represents the corresponding pair of solutions, each a 3-D vector
field. For the CSEM problem, b represents a single dipole source,
and e is just a single vector field. These differences are imple-
mented in the solution space module. A secondary field formula-
tion (e.g. Alumbaugh et al. 1996), which is essential for accurate
forward modelling for the CSEM problem, but less critical for MT,
is readily implemented through the solver interface module. For
the CSEM case, the interface includes routines to compute the pri-
mary and scattered fields and hence the source term needed for the
FD solver; for the MT case appropriate boundary conditions are
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simply generated (and the secondary field approach is not used). In
both cases, the same base-level FD solver is then called (once for
CSEM, twice for 3-D MT) to do the core computations. Data for the
MT and CSEM problems also differ, requiring modifications to the
data functional module: for 3-D MT data are TFs or impedances,
whereas for CSEM they are just simple observations of individual
electric or magnetic field components.

A joint MT-CSEM inversion could also be implemented with very
minor changes to the interface layer: solution space, solver driver
and data functional modules for MT and CSEM can be merged,
with the appropriate case (one or two source polarizations, sec-
ondary field solver or MT boundary value problem, impedances or
field components) selected based on the transmitter index. This idea
can be extended to develop joint inversion for EM with other sorts of
geophysical data (seismic, gravity, etc.). In a joint inversion setting,
the base layer might include two or more numerical discretization
and forward solver modules, with physical parameters that define
the forward problems coupled (explicitly or structurally) through
a joint model parameter module. These forward problem solvers
would then be interfaced to the generic inversion layer through
merged solution space, data functional and solver driver modules.
The structure of the data space module provides a good basis for
developing modified inversion search algorithms as might be appro-
priate for joint inversion, such as allowing for control over trade-offs
between fitting data of different types.

As a brief illustration of some of the capabilities of ModEM, we
consider synthetic data inversion tests for three of the EM inverse
problems discussed in previous sections: 2-D MT, 3-D MT and
global induction. In all of the tests discussed here, we generated
synthetic data using some variant on a ‘checkerboard’ conductivity
distribution, of the sort often used for resolution tests in seismic
tomography, added Gaussian random noise and used the NLCG
algorithm implemented in ModEM for inversion.

For the 2-D MT tests, we inverted TE and TM mode data for
12 periods evenly spaced on a logarithmic scale from 0.3–3000 s.
Data were generated for 30 sites, with error standard deviation 3 per
cent of impedance magnitude. The conductivity model consisted of
a checkerboard pattern of 10 and 1000 ohm-m blocks embedded
in a 100 ohm-m half-space (Fig. 4a). The same grid (Ny = 106

with nominal resolution 1.5 km; Nz = 40 increasing logarithmi-
cally, starting from 0.5 km) was used for generating the synthetic
data, and for the inversion. The covariance used was similar to
that of Siripunvaraporn & Egbert (2000), and the prior model was
a 100 ohm-m half-space. The NLCG inversion converged from a
normalized root-mean-square (rms) misfit of 15.9 to below 1.05 in
68 iterations. The resulting solution, which fits the data to within
the expected errors, and captures the main features of the synthetic
model, is shown in Fig. 4(b).

For the 3-D MT tests, we used a 3-D variant on the checkerboard,
as illustrated in Fig. 5(a). For data we used the full impedance (all
four complex components), plus the vertical magnetic field TFs,
for 12 periods logarithmically spaced between 10–10 000 s. Error
levels were set at 3 per cent of |ZxyZyx|1/2 for all impedance com-
ponents, and at 0.03 for the non-dimensional vertical magnetic TF
components. The grid (again used both for computing the synthetic
data and for inversion) was 67 × 67 × 60, with a nominal resolution
in the core of 20 km horizontally (see Fig. 5a) . A total of 225 sites,
on a 15 × 15 regular 80 km grid were used for the inversion. The
covariance was similar to that used for the 2-D tests, and the prior
was again a 100 ohm-m half-space. The NLCG algorithm converged
from a normalized rms misfit of 12.32 to below 1.05 in 51 itera-
tions, resulting in the inverse solution shown in Fig. 5(b). Again,
major model features are well recovered, with some degradation in
imaging capability evident below shallower conductive features, as
would be expected.

As a final example, we show a simple global induction example.
As discussed earlier, the ModEM implementation for this case is
based on the spherical coordinate forward solver of Uyeshima &
Schultz (2000), which is formulated in terms of the magnetic fields.
Data for this global problem are so-called C-responses, ratios of
the vertical (Hz) and north (Hx) components of the magnetic field,
computed under the assumption that external sources can be ap-
proximated well by a zonal (geomagnetic coordinates) dipole. A
stand-alone inversion code for this sort of data, based on the same
solver, is described by Kelbert et al. (2008). An application of the
inversion to observatory data is given in Kelbert et al. (2009). Here,
we only demonstrate our new ModEM version, using a simple syn-
thetic example based on a four-layer 1-D Earth (0–100 km depth:

Figure 4. (a) Resistivity model used to generate synthetic data for 2-D MT test, with site locations shown at top. (b) Inverse solution obtained with ModEM,
fitting TE and TM mode impedances with a normalized rms misfit of 1.05.
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264 G.D. Egbert and A. Kelbert

Figure 5. (a) Resistivity model used to generate synthetic data for 3D MT test. The centre of the model grid (used for generating data and for inversion) is
shown, along with the regular grid of sites on the surface. (b) Inverse solution obtained with ModEM, fitting full impedance tensor plus vertical magnetic TFs
to a normalized rms misfit of 1.05. Note that in the cut-away view the upper surface shown is at 2 km depth, but the structures shown extend to the surface.

Figure 6. (a) Heterogeneous conductivity in layer 3 (400–650 km depth) of global model used to generate test data for the global induction inversion, with
sites shown as filled circles. (b) Conductivity variations in the same layer recovered by the NLCG inversion, implemented with ModEM.

0.0001 S m−1; 100–400 km: 0.01 S m−1; 400–650 km: 0.1 S m−1;
650–4000 km: 2.0 S m−1) with an l = 6, m = 4 spherical harmonic
perturbation (in geomagnetic dipole coordinates) imposed in layer
3 (400–650 km). The amplitude of the perturbation (Fig. 6a) is
equivalent to one order of magnitude variation around the 0.1 S m−1

background.
Data were distributed on a regular spherical grid (eight latitudes,

from 56S to 56N, 15 evenly spaced longitudes, 120 sites total), for
four periods: 6 hr, 1, 4 and 16 d. The synthetic C-responses were
computed on a 3◦ × 3◦ grid, and again 3 per cent Gaussian errors
were added. The inversion assumed the same 1-D prior, and a rela-
tively low-dimensional model parametrization: only the third layer
was allowed to deviate from uniform, with variations parametrized
by spherical harmonics up to degree and order 9. A diagonal (in
the spherical harmonic domain) model error covariance was used
for the inversion, which was run on a 5◦ resolution spherical grid.
For this case, the inversion converged from a normalized rms mis-
fit of 14.43 to 1.46 in 76 NLCG iterations. Although the fit is not
quite to within the expected errors (presumably because of numer-
ical errors associated with the coarser grid used for the inversion)

conductivity variations in layer 3 (Fig. 6b) are recovered almost
perfectly.

8 C O N C LU S I O N S

We have derived general recipes for the Jacobian calculations that
are central to a wide range of EM inversion algorithms. Our analysis
is based on the discrete formulation of the forward problem, includ-
ing explicit treatment of parameter mappings and data functionals
in the numerical implementation. Through this analysis, we show
how the Jacobian can be decomposed into simpler operators, and we
analyse the dependence of these operators on the specific EM prob-
lem (e.g. through the transmitter and receiver configuration), or on
implementation specific details, such as the model parametrization
or the nature of the numerical discretization. Based on the general
formulation, we provide explicit expressions for Jacobian calcula-
tions for several example problems, including 2-D and 3-D MT, and
3-D controlled source problems with multiple transmitter locations.
A key result of our general analysis is the ‘factorization’ of the
Jacobian into components dependent only on transmitters, and on
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receivers. This has important implications for efficient implemen-
tation of inversion algorithms, which will be explored more thor-
oughly elsewhere. To the extent that we have discussed numerical
and discretization details of the forward problem, we have focused
on FD methods. However, much of our theory is more generally
applicable—for example, the division of the Jacobian into compo-
nents, and the dependencies of these components on details of the
EM problem and model parametrization—and will provide a useful
guide to development of inversion algorithms for any numerical
implementations of the EM forward problem.

Building on the general theoretical framework, we have sketched
our development of ModEM, a modular system of computer codes
for EM inversion. ModEM allows inversion codes developed for
one purpose to be rapidly adapted to other problems, and simplifies
development of new capabilities. For example, the 3-D MT inver-
sion discussed earlier can be extended to include intersite magnetic
TFs through very minor modifications to the data functional module
(essentially adding rows to the matrix A in 44). Only slightly greater
modifications were required for initial development of an inversion
for CSEM data, for which both sources and receivers are different.
Flexibility and ease of modification of the model parametrization,
and interchangeable inversion search algorithms are other notewor-
thy features of ModEM.
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A P P E N D I X A : D E P E N D E N C E O F
S O U RC E T E R M S O N M O D E L
PA R A M E T E R S

In some cases (in particular for active source problems), it is ap-
propriate to use a so-called ‘secondary field’ approach to solve
the forward problem (e.g. Alumbaugh et al. 1996). In this case,
a background (typically 1-D) conductivity is assumed, allowing
quasi-analytic computation of a background solution, with the ‘sec-
ondary’ field due to deviation from the background conductivity
then computed numerically. More precisely, the total field solution
is represented as e = ê + δe, where the background field ê sat-
isfies the 1-D equation defined by conductivity parameter m̂. It is
readily verified that the secondary field δe satisfies the induction
equation with a modified source. Assuming the 3-D operator can be
expressed as in (27) this takes the form

Smδe = −U[(π (m) − π (m̂)) ◦ Vê]. (A1)

The RHS in (A1) depends on the model parameter m, suggesting
that an additional term should be included in eq. (12).

However, if we differentiate both sides of (A1) with respect to m
and use (27) again we find

∂

∂m
[S0δe + U(π (m) ◦ Vδe)] = − ∂

∂m
[U(π (m) ◦ Vê] , (A2)

implying

0 = ∂

∂m
[S0δe + U(π (m) ◦ Ve)] = ∂

∂m
[Sme] , (A3)

the last equality following from the fact that S0ê does not depend
on m. Thus, as long as the RHS of the original problem is in-

dependent of the model parameter, ∂e/∂m = ∂[δe]/∂m satisfies
(12) without any additional terms, even if the equation for the sec-
ondary field does depend on m. Note also that even if the forward
problem is solved with a secondary field approach, the Jacobian
calculation (either through 14 or 15) involves only the standard
discrete solver S−1

m . Use of a secondary field approach only affects
the derivative indirectly through its dependence on the forward
solution.

A P P E N D I X B : 3 - D S TA G G E R E D G R I D
D E TA I L S

Here, we give a more precise definition of the discrete finite dif-
ference (FD) operator corresponding to ∇ × ∇ × +iωμσ and its
adjoint, and clarify implementation of boundary conditions for the
3-D magnetotelluric (MT) problem. Similar considerations apply to
other cases considered in the text. To do this, we need to distinguish
more precisely between interior and boundary nodes in the grid. In
the main text, SP (SD) have been used to denote the space of discrete
complex vector fields defined on all edges (faces) of the staggered
grid. Here, we use the same symbols with tildes (S̃P, S̃D) to indicate
the restriction to interior edges or faces. The discrete curl operator
is naturally defined as a mapping from all edges to all faces, but we
need only consider the partial mapping which computes the curl for
interior faces (see e.g. Kelbert (2006) for details). Denote this as

C : SP �→ S̃D (B1)

and partition e ∈ SP and C into interior and boundary edge compo-
nents

e =
[

ẽ
eb

]
C = [

C̃ Cb

]
, (B2)

so that C̃ : S̃P �→ S̃D and Ce = C̃ẽ + Cbeb .
To define adjoints precisely, we need to specify inner products.

The natural inner products for the primary and dual spaces (interior
nodes only) are

〈ẽ1, ẽ2〉P = ẽ∗
1VEẽ2

〈
h̃1, h̃2

〉
D

= h̃∗
1VFh̃2. (B3)

In (B3), VE and VF are real diagonal matrices of edge and face
volume elements. Edge volumes, for example, are defined as one-
fourth of the total volume of the four cells sharing the edge, so that
the first discrete inner product in (B3) approximates the integral L2

inner product for vector fields
∫ ∫ ∫

E∗
1(x) · E2(x)dV . The adjoint

of the interior curl operator C̃† : S̃D �→ S̃P satisfies, by definition,〈
h̃, C̃ẽ

〉
D

= 〈
C̃†h̃, ẽ

〉
P

∀ẽ ∈ S̃P, h̃ ∈ S̃D. (B4)

Noting that that C̃ is real, one then readily derives

C̃† = V−1
E C̃T VF. (B5)

From the definitions of VE and VF one can verify that C̃† indeed
corresponds to the appropriate geometric definition of the curl op-
erator defined on cell faces. Thus, the electric field eq. (22) with
source js

∇ × ∇ × E + iωμσE = js (B6)

can be approximated on the discrete grid as

C̃†Ce + iωμσ ẽ = [C̃†C̃ + iωμσ ]ẽ + C̃†Cbeb = b̃, (B7)

where b̃ ∈ S̃P gives the discrete approximation for the source cur-
rent js inside the domain; these currents (and hence b̃) vanish for
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the 3-D MT example we have focused on. The discrete system
(B7) has one equation for each of the Ñe interior edges, but N e (=
total number of edges) unknowns. Boundary conditions are thus
required, most simply specification of tangential electric field com-
ponents on the boundary edges. Then, the full system of equations
(Se = b) can be decomposed into interior and boundary components
as[

C̃†C̃ + iωμσ C̃†Cb

0 I

][
ẽ

eb

]
=

[
Si i Sib

0 I

][
ẽ

eb

]
=

[
b̃

bb

]
,

(B8)

where bb represents the specified boundary data. Eliminating the
boundary edges results in a well-posed Ñe × Ñe problem for electric
fields restricted to interior edges

[C̃†C̃ + iωμσ I]ẽ = Si i ẽ = b̃ − C̃†Cbbb, (B9)

with the RHS determined from the boundary data, and any source
terms in the domain. Using (B5), we see that the discrete opera-
tor in (B9) can be written as Si i = V−1

E C̃T VFC̃ + iωμσ I. Thus, as
sketched in Section 3, the system Se = b can be reduced to symmet-
ric form by eliminating the boundary nodes, and then multiplying
both sides of the resulting eq. (B9) by VE.

We emphasize that in our treatment of the discrete forward prob-
lem we take e, S and b to include both interior and boundary nodes.
Thus to be precise in our application of (27) to the 3-D FD equations
considered here, we should take

S0 =
[

C̃†C̃ C̃†Cb

0 I

]
, (B10)

and we should define π (m) ≡ σ (m) ≡ 0 on boundary edges. This
is a general property of π (m), since the boundary conditions do not
depend on the model parameter. This implies that the columns of P
corresponding to boundary nodes will all vanish. Also, accounting
for the boundary conditions in the transpose of S we have, in the
notation of (B8),

ST e =
[

Si i 0

ST
ib I

] [
ẽ

eb

]
=

[
b̃

bb

]
. (B11)

The transposed solution operator (ST )−1b, which appears exten-
sively throughout the main text, can thus be interpreted as solution
of the homogeneous problem (for interior nodes)

ST
ii ẽ = b̃ (B12)

followed by computation of the boundary terms

eb = bb − ST
ib ẽ. (B13)

In fact, solutions to the adjoint problem (ST )−1b are always multi-
plied by PT , and because the rows of PT corresponding to boundary
components are zero, the boundary terms in (B13) are never actually
required for our purposes.

A P P E N D I X C : T R A N S F O R M AT I O N O F
JA C O B I A N T O R E A L F O R M

To allow for the fact that the model parameter m is typically real, and
in some cases data are also real, we have assumed that d and J are
real, with any complex observations (e.g. an impedance) represented
as two real elements of the data vector. However, throughout the text,
we have used complex notation for L, S−1

m0
, P and Q, so J computed

from (14) would also be complex. In fact, for complex observations
it is readily verified that the real and imaginary parts of a row of the
complex expression for the Jacobian give the sensitivity (a vector
in the real model parameter space) for the corresponding real and
imaginary parts of one observation. Thus, to keep the Jacobian and
the data vector strictly real, we can set

d̄ =
[ �(d)

�(d)

]
J̄ =

[ �(J)

�(J)

]
= �

[[
L

−iL

]
S−1P +

[
Q

−iQ

]]

(C1)

with the convention that for any observations that are intrinsically
real the rows corresponding to the imaginary component are omit-
ted. From (C1), J̄T d̄ = �(JT )�(d) + �(JT )�(d). It is easily seen
that

J̄T d̄ = �[JT d∗] = �[PT ST −1
LT d∗ + Qd∗], (C2)

where the superscript asterisk denotes the complex conjugate. Thus,
the complex component matrices can be used to construct the
real Jacobian J̄, and to implement multiplication by this matrix
and its transpose. Note also that while we assume the data vec-
tor is real, real and imaginary parts of sensitivities for a com-
plex observation are computed (e.g. via 15) with a single adjoint
solution.

Apparent resistivity and phase provide examples of observations
that are intrinsically real. In terms of the impedance, the apparent
resistivity is defined as

ρa = (ωμ)−1 |Z |2 = (ωμ)−1
[
Z 2

r + Z 2
i

]
, (C3)

where Zr and Z i are real and imaginary parts of the impedance Z,
and ω is angular frequency. Applying the chain rule,

∂ρa

∂m
= ∂ρa

∂ Zr

∂ Zr

∂m
+ ∂ρa

∂ Z i

∂ Z i

∂m
= 2

ωμ

[
Zr

∂ Zr

∂m
+ Z i

∂ Z i

∂m

]
(C4)

= 2

ωμ

[
Zr� ∂ Z

∂m
+ Z i� ∂ Z

∂m

]
= �

[
2Z∗

ωμ

∂ Z

∂m

]

= �
[

2Z∗lT
Z

ωμ

∂e

∂m

]
. (C5)

Thus, lρ = 2Z∗lT
Z /ωμ gives the (complex) row of L for an apparent

resistivity, again with the convention that the real part of the product
in (14) is taken for the corresponding row of the real Jacobian.
Similarly for the phase φ = tan −1(Zr/Z i), we find that the row of L
takes the form lφ = iZ∗lT

Z / |Z |2.
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